In this paper the authors study generic covers of C^2 branched over x^n + y^m = 0 s.t. the total space is a normal analytic surface. They found a complete description of the monodromy of the cover in terms of the monodromy graphs and an almost complete description of the local fundamental groups in case (n, m) = 1. For the general case, they give explicit descriptions of base changes in terms of monodromy graphs; they describe completely the embedded resolution graphs in the case n|m. Via these base changes every cover is a quotient of such a cover.

Generic covers branched over ${x^n =y^m}$

MANFREDINI, SANDRO;
2000-01-01

Abstract

In this paper the authors study generic covers of C^2 branched over x^n + y^m = 0 s.t. the total space is a normal analytic surface. They found a complete description of the monodromy of the cover in terms of the monodromy graphs and an almost complete description of the local fundamental groups in case (n, m) = 1. For the general case, they give explicit descriptions of base changes in terms of monodromy graphs; they describe completely the embedded resolution graphs in the case n|m. Via these base changes every cover is a quotient of such a cover.
2000
Manfredini, Sandro; Pignatelli, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/160562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact