This paper is concerned with the fine properties of monotone functions on $R^n$. We study the continuity and differentiability properties of these functions, the approximability properties, the structure of the distributional derivatives and of the weak Jacobians. Moreover, we exhibit an example of a monotone function $u$ which is the gradient of a $C^{1,\alpha}$ convex function and whose weak Jacobian $Ju$ is supported on a purely unrectifiable set.

A geometrical approach to monotone functions in R^n

ALBERTI, GIOVANNI;
1999-01-01

Abstract

This paper is concerned with the fine properties of monotone functions on $R^n$. We study the continuity and differentiability properties of these functions, the approximability properties, the structure of the distributional derivatives and of the weak Jacobians. Moreover, we exhibit an example of a monotone function $u$ which is the gradient of a $C^{1,\alpha}$ convex function and whose weak Jacobian $Ju$ is supported on a purely unrectifiable set.
1999
Alberti, Giovanni; Ambrosio, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/160996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 113
  • ???jsp.display-item.citation.isi??? 116
social impact