The present and accompanying (Casini, G., and N.C. Brecha, J. Comp. Neurol. 326:302-313, 1992) papers investigate the postnatal development of tyrosine hydroxylase (TH)-immunoreactive (IR) amacrine cells in the rabbit retina. This study is focused on a detailed analysis of the patterns of cellular growth and differentiation of TH-IR amacrine cells, which serve as a model to gain insights into the mechanisms underlying developmental changes associated with the maturation of amacrine cells. Faintly staining TH-IR neurons are present in the proximal inner nuclear layer of newborn retinas. They are characterized by a large nucleus and usually a single primary process lacking varicosities. At postnatal day (PND) 6, TH-IR processes display more complex morphological characteristics, including a few varicosities, and second- and third-order ramifications. Growth cones are often seen. At PNDs 10 and 12 (eye opening), TH-IR cells have general morphological characteristics similar to adult TH-IR amacrines. They display 2-5 primary processes, which start forming a complex network of fibers in lamina 1 of the inner plexiform layer (IPL). TH-IR processes are also present in lamina 3 and rarely in lamina 5 of the IPL. Many fibers ending in growth cones are observed. In addition, very rare, thin TH-IR fibers are present in the outer plexiform layer. At PND 19, TH-IR fibers form a complex, dense network in lamina 1 of the IPL, and loose networks in laminae 3 and 5. Growth cones are not observed at this age. At PND 26, a few "ring-like" structures formed by TH-IR fibers in lamina 1 of the IPL are observed for the first time. In adult retinas, the "ring-like" structures are more numerous than at PND 26. A second, rare type of TH-IR cell ("type B") is encountered in all retinal regions beginning at PND 10. These cells are characterized by weak immunostaining and a small soma size. The present findings show that a significant differentiation of TH-IR neurons occurs during the first 10-12 PNDs. Eye opening is an important period for the maturation of TH-IR amacrines and, more generally, for the maturation of the IPL.
Postnatal development of tyrosine hydroxylase immunoreactive amacrine cells in the rabbit retina. I. Morphological characterization
CASINI, GIOVANNI;
1992-01-01
Abstract
The present and accompanying (Casini, G., and N.C. Brecha, J. Comp. Neurol. 326:302-313, 1992) papers investigate the postnatal development of tyrosine hydroxylase (TH)-immunoreactive (IR) amacrine cells in the rabbit retina. This study is focused on a detailed analysis of the patterns of cellular growth and differentiation of TH-IR amacrine cells, which serve as a model to gain insights into the mechanisms underlying developmental changes associated with the maturation of amacrine cells. Faintly staining TH-IR neurons are present in the proximal inner nuclear layer of newborn retinas. They are characterized by a large nucleus and usually a single primary process lacking varicosities. At postnatal day (PND) 6, TH-IR processes display more complex morphological characteristics, including a few varicosities, and second- and third-order ramifications. Growth cones are often seen. At PNDs 10 and 12 (eye opening), TH-IR cells have general morphological characteristics similar to adult TH-IR amacrines. They display 2-5 primary processes, which start forming a complex network of fibers in lamina 1 of the inner plexiform layer (IPL). TH-IR processes are also present in lamina 3 and rarely in lamina 5 of the IPL. Many fibers ending in growth cones are observed. In addition, very rare, thin TH-IR fibers are present in the outer plexiform layer. At PND 19, TH-IR fibers form a complex, dense network in lamina 1 of the IPL, and loose networks in laminae 3 and 5. Growth cones are not observed at this age. At PND 26, a few "ring-like" structures formed by TH-IR fibers in lamina 1 of the IPL are observed for the first time. In adult retinas, the "ring-like" structures are more numerous than at PND 26. A second, rare type of TH-IR cell ("type B") is encountered in all retinal regions beginning at PND 10. These cells are characterized by weak immunostaining and a small soma size. The present findings show that a significant differentiation of TH-IR neurons occurs during the first 10-12 PNDs. Eye opening is an important period for the maturation of TH-IR amacrines and, more generally, for the maturation of the IPL.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.