Systematic calculations of asymmetric nuclear matter have been performed in the framework of the Brueckner-Bethe-Goldstone approach in a wide range of both density and asymmetry parameter. The empirical parabolic law fulfilled by the binding energy per nucleon is confirmed by the present results in all the range of the asymmetry parameter values. The predominant role of the 3S1-3D1 component of the NN interaction is elucidated. A linear variation of the proton and neutron single-particle potentials is found as increasing the neutron excess; a deviation from the phenomenological potentials occurs for highly asymmetric matter as an effect of the self-consistency. The present calculations of the incompressibility predict a strong softening of the equation of state going from symmetric to asymmetric nuclear matter. The proton fraction in equilibrium with neutron matter has been determined from the beta-stability condition and its relevance to the superfluidity of neutron stars has been investigated.

Asymmetric nuclear matter equation of state

BOMBACI, IGNAZIO;
1991-01-01

Abstract

Systematic calculations of asymmetric nuclear matter have been performed in the framework of the Brueckner-Bethe-Goldstone approach in a wide range of both density and asymmetry parameter. The empirical parabolic law fulfilled by the binding energy per nucleon is confirmed by the present results in all the range of the asymmetry parameter values. The predominant role of the 3S1-3D1 component of the NN interaction is elucidated. A linear variation of the proton and neutron single-particle potentials is found as increasing the neutron excess; a deviation from the phenomenological potentials occurs for highly asymmetric matter as an effect of the self-consistency. The present calculations of the incompressibility predict a strong softening of the equation of state going from symmetric to asymmetric nuclear matter. The proton fraction in equilibrium with neutron matter has been determined from the beta-stability condition and its relevance to the superfluidity of neutron stars has been investigated.
1991
Bombaci, Ignazio; Lombardo, U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/16638
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 368
  • ???jsp.display-item.citation.isi??? 365
social impact