The paper considers the problem of analyzing the randomized error in the Lp sense for eigenvalue and eigenvector estimate by methods based on Krylov information. We report bounds for the approximation to the dominant eigenvalue of a real symmetric matrix by the power method, we then generalize those bounds to normal matrices. We show that we can apply upper bounds on the randomized error for estimating the dominant eigenpair by the Lanczos method in order to compute an approximation to the smallest eigenpair. We then give a randomized algorithm for computing the condition number and we study its randomized error.

Randomized Error Estimation for Eigenvalue Approximation

DEL CORSO, GIANNA MARIA
2000

Abstract

The paper considers the problem of analyzing the randomized error in the Lp sense for eigenvalue and eigenvector estimate by methods based on Krylov information. We report bounds for the approximation to the dominant eigenvalue of a real symmetric matrix by the power method, we then generalize those bounds to normal matrices. We show that we can apply upper bounds on the randomized error for estimating the dominant eigenpair by the Lanczos method in order to compute an approximation to the smallest eigenpair. We then give a randomized algorithm for computing the condition number and we study its randomized error.
DEL CORSO, GIANNA MARIA
File in questo prodotto:
File Dimensione Formato  
DelCorso2000_Article_RandomizedErrorEstimationForEi.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 152.39 kB
Formato Adobe PDF
152.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/166550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact