We shall describe a canonical procedure to associate to any (germ of) holomorphic self-map F of C-n fixing the origin so that dF(O) is invertible and nondiagonalizable an n-dimensional complex manifold M, a holomorphic map pi: M --> C-n, a point e is an element of M and a (germ of) holomorphic self-map (F) over tilde of M such that: pi restricted to M \ pi(-1)(O) is a biholomorphism between M \ pi(-1)(O) and C-n \{O}; pi o (F) over tilde = Fo pi; and e is a fixed point of (F) over tilde such that d (F) over tilde(e) is diagonalizable. Furthermore, we shall use this construction to describe the local dynamics of such an F nearby me origin when sp (dF(O)) = {1}.

Diagonalization of nondiagonalizable discrete holomorphic dynamical systems

ABATE, MARCO
2000-01-01

Abstract

We shall describe a canonical procedure to associate to any (germ of) holomorphic self-map F of C-n fixing the origin so that dF(O) is invertible and nondiagonalizable an n-dimensional complex manifold M, a holomorphic map pi: M --> C-n, a point e is an element of M and a (germ of) holomorphic self-map (F) over tilde of M such that: pi restricted to M \ pi(-1)(O) is a biholomorphism between M \ pi(-1)(O) and C-n \{O}; pi o (F) over tilde = Fo pi; and e is a fixed point of (F) over tilde such that d (F) over tilde(e) is diagonalizable. Furthermore, we shall use this construction to describe the local dynamics of such an F nearby me origin when sp (dF(O)) = {1}.
2000
Abate, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/168867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact