The rates and extents of absorption and desorption of polyvinyl alcohol (PVA) samples on different solid substrates comprising montmorillonite, quartz sand, and farm soil, as well as humic acid mixture are reported. The uptake of PVA by the substrates was analyzed as a function of PVA hydrolysis (72-98%), molecular weight, and molecular weight distribution. Higher adsorption was detected on montmorillonite followed by farm soil, whereas the quartz sand did not display any specific adsorption affinity for the PVA. An increase in the hydrolysis degree of PVA increased the adsorption rate and extent whereas this feature was reversed by an increase in PVA molecular weight. The desorption of PVA samples from the different substrates was performed both under various pH conditions and in the presence of concentrated HF that was used to dissolve the silicon derivatives present in the substrates. Biodegradation experiments carried out in liquid cultures of PVA adsorbed on montmorillonite showed that the mineralization of the adsorbed PVA was much lower than that detected for the nonadsorbed PVA. This investigation suggests that irreversible adsorption of PVA on the clay component occurs in soil, thus substantially inhibiting PVA biodegradation.

Adsorption/desorption of poly(vinyl alcohol) on solid substrates and relevant biodegradation

CHIELLINI, EMO;CORTI, ANDREA;SOLARO, ROBERTO
2000-01-01

Abstract

The rates and extents of absorption and desorption of polyvinyl alcohol (PVA) samples on different solid substrates comprising montmorillonite, quartz sand, and farm soil, as well as humic acid mixture are reported. The uptake of PVA by the substrates was analyzed as a function of PVA hydrolysis (72-98%), molecular weight, and molecular weight distribution. Higher adsorption was detected on montmorillonite followed by farm soil, whereas the quartz sand did not display any specific adsorption affinity for the PVA. An increase in the hydrolysis degree of PVA increased the adsorption rate and extent whereas this feature was reversed by an increase in PVA molecular weight. The desorption of PVA samples from the different substrates was performed both under various pH conditions and in the presence of concentrated HF that was used to dissolve the silicon derivatives present in the substrates. Biodegradation experiments carried out in liquid cultures of PVA adsorbed on montmorillonite showed that the mineralization of the adsorbed PVA was much lower than that detected for the nonadsorbed PVA. This investigation suggests that irreversible adsorption of PVA on the clay component occurs in soil, thus substantially inhibiting PVA biodegradation.
Chiellini, Emo; Corti, Andrea; Politi, B; Solaro, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/169015
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
social impact