The convergence in various topologies of sequences of inner superposition (composition) operators acting between Lebesgue spaces and of their linear combinations is studied. In particular, the sequential density results for the linear span of such operators is proved for the weak, weak continuous and strong operator topologies.

Weak and strong density of compositions

DE PASCALE, LUIGI;STEPANOV, EVGENY
2000-01-01

Abstract

The convergence in various topologies of sequences of inner superposition (composition) operators acting between Lebesgue spaces and of their linear combinations is studied. In particular, the sequential density results for the linear span of such operators is proved for the weak, weak continuous and strong operator topologies.
2000
DE PASCALE, Luigi; Stepanov, Evgeny
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/170514
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact