The peptide somatostatin (SS) is widely distributed in the mammalian brain where it modulates neuronal activity through interactions with specific membrane-bound receptor subtypes (ssts). Five different ssts were characterized so far (sst1-5) and their selective agonists were developed on the basis of their binding specificity. SS and ssts are transiently expressed in the developing brain, suggesting a functional role of somatostatinergic systems in neuronal maturation. In the present study, we investigated the effects of chronic exposure to either the SS synthetic analogue, SS-14 or octreotide (a long-acting sst2-preferring analogue) on the maturation of SS-immunoreactivity (-ir) in the primary visual cortex of the rat. SS-ir maturation was investigated both by an evaluation of the number of SS-immunoreactive cells and by radioimmunoassay (RIA) to measure the levels of SS in the postnatal visual cortex. In the visual cortex of normal rats, the number of SS-positive cells markedly increased during the second postnatal week and then significantly decreased until the adult value was reached at the third week. Early and repeated intracerebroventricular (i.c.v.) injections of either SS-14 or octreotide prevented the increase in the number of SS-positive cells, with adult values reached at the end of the first postnatal week. Similarly, administration of either SS-14 or octreotide significantly decreased the SS content of the visual cortex, measured at the end of the second postnatal week. These results show that high local concentrations of either SS-14 or octreotide interfere with SS expression in developing cortical neurons in a restricted postnatal period.

Chronic exposure to either somatostatin (SS) or octreotide, a long lasting SS analogue, affects SS expression in the postnatal visual cortex of the rat

FONTANESI, GIGLIOLA;BLANDIZZI, CORRADO;DEL TACCA, MARIO;BAGNOLI, PAOLA
1998-01-01

Abstract

The peptide somatostatin (SS) is widely distributed in the mammalian brain where it modulates neuronal activity through interactions with specific membrane-bound receptor subtypes (ssts). Five different ssts were characterized so far (sst1-5) and their selective agonists were developed on the basis of their binding specificity. SS and ssts are transiently expressed in the developing brain, suggesting a functional role of somatostatinergic systems in neuronal maturation. In the present study, we investigated the effects of chronic exposure to either the SS synthetic analogue, SS-14 or octreotide (a long-acting sst2-preferring analogue) on the maturation of SS-immunoreactivity (-ir) in the primary visual cortex of the rat. SS-ir maturation was investigated both by an evaluation of the number of SS-immunoreactive cells and by radioimmunoassay (RIA) to measure the levels of SS in the postnatal visual cortex. In the visual cortex of normal rats, the number of SS-positive cells markedly increased during the second postnatal week and then significantly decreased until the adult value was reached at the third week. Early and repeated intracerebroventricular (i.c.v.) injections of either SS-14 or octreotide prevented the increase in the number of SS-positive cells, with adult values reached at the end of the first postnatal week. Similarly, administration of either SS-14 or octreotide significantly decreased the SS content of the visual cortex, measured at the end of the second postnatal week. These results show that high local concentrations of either SS-14 or octreotide interfere with SS expression in developing cortical neurons in a restricted postnatal period.
1998
Fontanesi, Gigliola; Petrucci, C.; Lazzerini, M.; Blandizzi, Corrado; DEL TACCA, Mario; Bagnoli, Paola
File in questo prodotto:
File Dimensione Formato  
FONTANESI-SOMATOSTATIN-BRAIN-1998.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/173490
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact