In this paper, a new algorithm for striping noise reduction in hyperspectral images is proposed. The new algorithm exploits the orthogonal subspace approach to estimate the striping component and to remove it from the image, preserving the useful signal. The algorithm does not introduce artifacts in the data and also takes into account the dependence on the signal intensity of the striping component. The effectiveness of the algorithm in reducing striping noise is experimentally demonstrated on real data acquired both by airborne and satellite hyperspectral sensors.

Subspace-Based Striping Noise Reduction in Hyperspectral Images

Acito N;DIANI, MARCO;CORSINI, GIOVANNI
2011-01-01

Abstract

In this paper, a new algorithm for striping noise reduction in hyperspectral images is proposed. The new algorithm exploits the orthogonal subspace approach to estimate the striping component and to remove it from the image, preserving the useful signal. The algorithm does not introduce artifacts in the data and also takes into account the dependence on the signal intensity of the striping component. The effectiveness of the algorithm in reducing striping noise is experimentally demonstrated on real data acquired both by airborne and satellite hyperspectral sensors.
2011
Acito, N; Diani, Marco; Corsini, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/173564
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 92
social impact