Until now, the following are not known: (1) the mechanisms underlying the induction of chemokine (C-X-C motif) ligand 10 (CXCL10) secretion by cytokines in thyrocytes; (2) if pioglitazone is able, like rosiglitazone, to inhibit the interferon (IFN)-γ-induced chemokine expression in Graves disease (GD) or ophthalmopathy (GO); and (3) the mechanisms underlying the inhibition by thiazolidinediones of the cytokines-induced CXCL10 release in thyrocytes. The aims of this study were (1) to study the mechanisms underlying the induction of CXCL10 secretion by cytokines in GD thyrocytes; (2) to test the effect of pioglitazone on IFNγ-inducible CXCL10 secretion in primary thyrocytes, orbital fibroblasts, and preadipocytes from GD and GO patients; and (3) to evaluate the mechanism of action of thiazolidinediones on nuclear factor (NF)-κB activation. The results of the study (1) demonstrate that IFNγ + TNFα enhanced the DNA binding activity of NF-κB in GD thyrocytes, in association with the release of CXCL10; (2) show that pioglitazone exerts a dose-dependent inhibition on IFNγ + TNFα-induced CXCL10 secretion in thyrocytes, orbital fibroblasts, and preadipocytes, similar to the effect observed with rosiglitazone; and (3) demonstrate that thiazolidinediones (pioglitazone and rosiglitazone) act by reducing the IFNγ + TNFα activation of NF-κB in Graves thyrocytes. To the best of our knowledge, this is the first study showing that cytokines are able to activate NF-κB in Graves thyrocytes and a parallel inhibitory effect of pioglitazone both on CXCL10 chemokine secretion and NF-κB activation. Future studies will be needed to verify if new targeted peroxisome proliferator-activated receptor-γ activators may be able to exert the anti-inflammatory effects without the risk of expanding retrobulbar fat mass.

Cytokines (interferon-γ and tumor necrosis factor-α)-induced nuclear factor-κB activation and chemokine (C-X-C motif) ligand 10 release in Graves disease and ophthalmopathy are modulated by pioglitazone

ANTONELLI, ALESSANDRO;Ferrari SM;Fallahi P;PIAGGI, SIMONA;PAOLICCHI, ALDO;SELLARI FRANCESCHINI, STEFANO;FERRANNINI, ELEUTERIO
2011

Abstract

Until now, the following are not known: (1) the mechanisms underlying the induction of chemokine (C-X-C motif) ligand 10 (CXCL10) secretion by cytokines in thyrocytes; (2) if pioglitazone is able, like rosiglitazone, to inhibit the interferon (IFN)-γ-induced chemokine expression in Graves disease (GD) or ophthalmopathy (GO); and (3) the mechanisms underlying the inhibition by thiazolidinediones of the cytokines-induced CXCL10 release in thyrocytes. The aims of this study were (1) to study the mechanisms underlying the induction of CXCL10 secretion by cytokines in GD thyrocytes; (2) to test the effect of pioglitazone on IFNγ-inducible CXCL10 secretion in primary thyrocytes, orbital fibroblasts, and preadipocytes from GD and GO patients; and (3) to evaluate the mechanism of action of thiazolidinediones on nuclear factor (NF)-κB activation. The results of the study (1) demonstrate that IFNγ + TNFα enhanced the DNA binding activity of NF-κB in GD thyrocytes, in association with the release of CXCL10; (2) show that pioglitazone exerts a dose-dependent inhibition on IFNγ + TNFα-induced CXCL10 secretion in thyrocytes, orbital fibroblasts, and preadipocytes, similar to the effect observed with rosiglitazone; and (3) demonstrate that thiazolidinediones (pioglitazone and rosiglitazone) act by reducing the IFNγ + TNFα activation of NF-κB in Graves thyrocytes. To the best of our knowledge, this is the first study showing that cytokines are able to activate NF-κB in Graves thyrocytes and a parallel inhibitory effect of pioglitazone both on CXCL10 chemokine secretion and NF-κB activation. Future studies will be needed to verify if new targeted peroxisome proliferator-activated receptor-γ activators may be able to exert the anti-inflammatory effects without the risk of expanding retrobulbar fat mass.
Antonelli, Alessandro; Ferrari, Sm; Fallahi, P; Piaggi, Simona; Paolicchi, Aldo; SELLARI FRANCESCHINI, Stefano; Salvi, M; Ferrannini, Eleuterio
File in questo prodotto:
File Dimensione Formato  
Arpi 173602.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 382.79 kB
Formato Adobe PDF
382.79 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/173602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 55
social impact