The optimization of an affinity chromatography method on Matrex Orange resin allowed the separation of glutathione modified and native aldose reductase in crude extracts of bovine lens. The analysis of hyperbaric oxygen treated lenses revealed the formation in the intact cultured lens of an enzyme form displaying affinity column binding properties, specific activity, sensitivity to inhibition and susceptibility to activation by thiol reducing agents, all comparable to glutathione modified aldose reductase. The extent of the enzyme modification increased with the time of the oxidative treatment and was maximal in the lens nucleus. The relative increase of glutathione modified aldose reductase from cortex to the nucleus is consistent with the increase in these lens regions of the GSSG/GSH ratio. (C) 1995 Academic Press, Inc.
Occurrence of glutathione-modified aldose reductase in oxidatively stressed bovine lens.
CAPPIELLO, MARIO;DEL CORSO, ANTONELLA;MURA, UMBERTO
1995-01-01
Abstract
The optimization of an affinity chromatography method on Matrex Orange resin allowed the separation of glutathione modified and native aldose reductase in crude extracts of bovine lens. The analysis of hyperbaric oxygen treated lenses revealed the formation in the intact cultured lens of an enzyme form displaying affinity column binding properties, specific activity, sensitivity to inhibition and susceptibility to activation by thiol reducing agents, all comparable to glutathione modified aldose reductase. The extent of the enzyme modification increased with the time of the oxidative treatment and was maximal in the lens nucleus. The relative increase of glutathione modified aldose reductase from cortex to the nucleus is consistent with the increase in these lens regions of the GSSG/GSH ratio. (C) 1995 Academic Press, Inc.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.