In this work we consider the linear theory of the Thermodynamics of a conductor, characterized by Fourier's law for the heat flux and by a constitutive equation for the electric current density, that has memory effects together with those given by the actual action of the electric field. We prove uniqueness, existence and asymptotic stability theorems for the three-dimensional model.

Existence, uniqueness and asymptotic stability for a three-dimensional model of a thermoelectromagnetic material

AMENDOLA, GIOVAMBATTISTA;MANES, ADELE
1998

Abstract

In this work we consider the linear theory of the Thermodynamics of a conductor, characterized by Fourier's law for the heat flux and by a constitutive equation for the electric current density, that has memory effects together with those given by the actual action of the electric field. We prove uniqueness, existence and asymptotic stability theorems for the three-dimensional model.
Amendola, Giovambattista; Manes, Adele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/176603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact