The Green Functions, giving the Crack Opening Displacement components of an inclined edge crack under general loading conditions, were obtained starting from the matrix-like structure of the Weight Functions developed for determining the Stress Intensity Factors. The mathematical formulation of the problem is presented and the computational efficiency of the method is demonstrated by solving and discussing the non linear problem of a partially closed inclined edge crack under bending. By means of an iterative procedure, the closed portion of the crack is determined and the effects of normal and friction contact forces on the Crack Opening Displacement components and on the Stress Intensity Factors are discussed. The efficiency and the accuracy of this approach are assessed by comparison with Finite Element solutions.
A weight function technique for partially closed inclined edge cracks analysis
BEGHINI, MARCO;BERTINI, LEONARDO;
2001-01-01
Abstract
The Green Functions, giving the Crack Opening Displacement components of an inclined edge crack under general loading conditions, were obtained starting from the matrix-like structure of the Weight Functions developed for determining the Stress Intensity Factors. The mathematical formulation of the problem is presented and the computational efficiency of the method is demonstrated by solving and discussing the non linear problem of a partially closed inclined edge crack under bending. By means of an iterative procedure, the closed portion of the crack is determined and the effects of normal and friction contact forces on the Crack Opening Displacement components and on the Stress Intensity Factors are discussed. The efficiency and the accuracy of this approach are assessed by comparison with Finite Element solutions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.