The $p$-component of the index of a number field $K$ depends only on the completions of $K$ at the primes over $p$. In this paper we define an equivalence relation between $m$-tuples of local fields such that, if two number fields $K$ and $K'$ have equivalent $m$-tuples of completions at the primes over $p$, then they have the same $p$-component of the index. This equivalence can be interpreted in terms of the decomposition groups of the primes over $p$ of the normal closures of $K$ and $K'$.
An equivalence between local fields
DEL CORSO, ILARIA;DVORNICICH, ROBERTO
2005-01-01
Abstract
The $p$-component of the index of a number field $K$ depends only on the completions of $K$ at the primes over $p$. In this paper we define an equivalence relation between $m$-tuples of local fields such that, if two number fields $K$ and $K'$ have equivalent $m$-tuples of completions at the primes over $p$, then they have the same $p$-component of the index. This equivalence can be interpreted in terms of the decomposition groups of the primes over $p$ of the normal closures of $K$ and $K'$.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JNTequivalence.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
306.49 kB
Formato
Adobe PDF
|
306.49 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.