The $p$-component of the index of a number field $K$ depends only on the completions of $K$ at the primes over $p$. In this paper we define an equivalence relation between $m$-tuples of local fields such that, if two number fields $K$ and $K'$ have equivalent $m$-tuples of completions at the primes over $p$, then they have the same $p$-component of the index. This equivalence can be interpreted in terms of the decomposition groups of the primes over $p$ of the normal closures of $K$ and $K'$.

An equivalence between local fields

DEL CORSO, ILARIA;DVORNICICH, ROBERTO
2005-01-01

Abstract

The $p$-component of the index of a number field $K$ depends only on the completions of $K$ at the primes over $p$. In this paper we define an equivalence relation between $m$-tuples of local fields such that, if two number fields $K$ and $K'$ have equivalent $m$-tuples of completions at the primes over $p$, then they have the same $p$-component of the index. This equivalence can be interpreted in terms of the decomposition groups of the primes over $p$ of the normal closures of $K$ and $K'$.
2005
DEL CORSO, Ilaria; Dvornicich, Roberto
File in questo prodotto:
File Dimensione Formato  
JNTequivalence.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 306.49 kB
Formato Adobe PDF
306.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/179517
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact