Tissue engineering scaffolds should be able to reproduce optimal microenvironments in order to support cell attachment, three-dimensional growth, migration and, regarding fibroblasts, must also promote extracellular matrix production. Various bioactive molecules are employed in the preparation of spongy scaffolds to obtain biomimetic matrices by either surface-coating or introducing them into the bulk composition of the biomaterial. The biomimetic properties of a spongy matrix composed of PVA combined with the natural component gelatine were evaluated by culturing human gingival fibroblasts on the scaffold. Cell adhesion, morphology and distribution within the scaffold were assessed by histology and electron microscopy; viability and metabolic activity as well as extracellular matrix production were analyzed by MTT assay, cytochemistry and immunocytochemistry. Fibroblasts interacted positively with PVA/gelatine. They adhered to the PVA/gelatine matrix in which they had good spreading activity and active metabolism; fibroblasts were also able to produce extracellular matrix molecules (type I collagen, fibronectin and laminin) compared to bi-dimensionally grown cells. The in situ creation of a biological matrix by human fibroblasts together with the ability to produce growth factor TGF-beta1 and the intracellular signal transduction molecule RhoA, suggests that this kind of PVA/gelatine sponge may represent a suitable support for in vitro extracellular matrix production and connective tissue regeneration.

Interaction of human gingival fibroblasts with PVA/gelatine sponges

MOSCATO, STEFANIA;MATTII, LETIZIA;D'ALESSANDRO, DELFO;CASCONE, MARIA GRAZIA;LAZZERI, LUIGI;DOLFI, AMELIO;BERNARDINI, NUNZIA
2008-01-01

Abstract

Tissue engineering scaffolds should be able to reproduce optimal microenvironments in order to support cell attachment, three-dimensional growth, migration and, regarding fibroblasts, must also promote extracellular matrix production. Various bioactive molecules are employed in the preparation of spongy scaffolds to obtain biomimetic matrices by either surface-coating or introducing them into the bulk composition of the biomaterial. The biomimetic properties of a spongy matrix composed of PVA combined with the natural component gelatine were evaluated by culturing human gingival fibroblasts on the scaffold. Cell adhesion, morphology and distribution within the scaffold were assessed by histology and electron microscopy; viability and metabolic activity as well as extracellular matrix production were analyzed by MTT assay, cytochemistry and immunocytochemistry. Fibroblasts interacted positively with PVA/gelatine. They adhered to the PVA/gelatine matrix in which they had good spreading activity and active metabolism; fibroblasts were also able to produce extracellular matrix molecules (type I collagen, fibronectin and laminin) compared to bi-dimensionally grown cells. The in situ creation of a biological matrix by human fibroblasts together with the ability to produce growth factor TGF-beta1 and the intracellular signal transduction molecule RhoA, suggests that this kind of PVA/gelatine sponge may represent a suitable support for in vitro extracellular matrix production and connective tissue regeneration.
2008
Moscato, Stefania; Mattii, Letizia; D'Alessandro, Delfo; Cascone, MARIA GRAZIA; Lazzeri, Luigi; Serino, Lp; Dolfi, Amelio; Bernardini, Nunzia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/179668
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 45
social impact