We consider the Cauchy problem for the Perona–Malik equation in a bounded open set, with Neumann boundary conditions. In the one dimensional case, we prove some a priori estimates. Then we consider the semi-discrete scheme obtained by replacing the space derivatives by finite differences. Extending the previous estimates to the discrete setting we prove a compactness result for this scheme and we characterize the possible limits in some cases. Finally we give examples to show that the corresponding estimates are in general false in the more dimensional case.

Gradient estimates for the Perona-Malik equation

GHISI, MARINA;GOBBINO, MASSIMO
2007-01-01

Abstract

We consider the Cauchy problem for the Perona–Malik equation in a bounded open set, with Neumann boundary conditions. In the one dimensional case, we prove some a priori estimates. Then we consider the semi-discrete scheme obtained by replacing the space derivatives by finite differences. Extending the previous estimates to the discrete setting we prove a compactness result for this scheme and we characterize the possible limits in some cases. Finally we give examples to show that the corresponding estimates are in general false in the more dimensional case.
2007
Ghisi, Marina; Gobbino, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181066
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact