A stochastic infinite dimensional version of the GOY model is rigorously investigated. Well posedness of strong solutions, existence and p-integrability of invariant measures is proved. Existence of solutions to the zero viscosity equation is also proved. With these preliminary results, the asymptotic exponents zeta(p) of the structure function are investigated. Necessary and sufficient conditions for zeta(2) >= 2/3 and zeta(2)=2/3 are given and discussed on the basis of numerical simulations.

Some Rigorous Results on a Stochastic GOY Model

BARSANTI, MICHELE;FLANDOLI, FRANCO
2006-01-01

Abstract

A stochastic infinite dimensional version of the GOY model is rigorously investigated. Well posedness of strong solutions, existence and p-integrability of invariant measures is proved. Existence of solutions to the zero viscosity equation is also proved. With these preliminary results, the asymptotic exponents zeta(p) of the structure function are investigated. Necessary and sufficient conditions for zeta(2) >= 2/3 and zeta(2)=2/3 are given and discussed on the basis of numerical simulations.
2006
Barbato, D.; Barsanti, Michele; Bessaih, H.; Flandoli, Franco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181355
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact