Administration of 5-fluorouracil (5-FU) may be associated with severe toxicities in patients who are deficient of dihydropyrimidine dehydrogenase (DPD) activity. For this reason, a sensitive HPLC method for the analysis of 5-FU and 5-fluoro-5,6-dihydrouracil (5-FDHU) was developed in the present study for the determination of DPD activity in nucleated cells of peripheral blood and pharmacokinetic analysis of 5-FU and 5-FDHU in humans. 5-FU and 5-FDHU were extracted from biologic matrices by adding sodium acetate, sodium sulfate, and diethyl ether/propanol. Dried samples were reconstituted in a mobile phase (KH2PO4 35 mmol/L, pH 4.0), isocratically eluted with a Hypersil C18 stationary phase (25 cm x 4.6 mm, 10 microm), and detected by a diode array detector (measurement and reference wavelengths, 215 and 360 nm, respectively). 5-Fluorocytosine (internal standard), 5-FDHU, and 5-FU were eluted within 13 minutes of the injection without interferences. Recoveries ranged between 81% to 85% for all compounds, and the method proved to be linear, with a coefficient of linearity of 0.999. The limits of detection and quantification were 3.2 and 16 ng/mL, respectively, and the within-day and between-day CV were less than 10% for both 5-FU and 5-FDHU. The present assay proved to be sufficiently sensitive and specific to evaluate cellular DPD activity and measure 5-FU and 5-FDHU plasma concentrations in cancer patients, thus allowing therapeutic 5-FU monitoring in patients and identification of DPD-deficient subjects at major risk of severe toxicities.

Improved analysis of 5-Fluorouracil and 5,6-dihydro-5-Fluorouracil by HPLC with diode array detection for determination of cellular dihydropyrimidine dehydrogenase activity and pharmacokinetic profiling

DI PAOLO, ANTONELLO;DANESI, ROMANO;BOCCI, GUIDO;FALCONE, ALFREDO;
2005

Abstract

Administration of 5-fluorouracil (5-FU) may be associated with severe toxicities in patients who are deficient of dihydropyrimidine dehydrogenase (DPD) activity. For this reason, a sensitive HPLC method for the analysis of 5-FU and 5-fluoro-5,6-dihydrouracil (5-FDHU) was developed in the present study for the determination of DPD activity in nucleated cells of peripheral blood and pharmacokinetic analysis of 5-FU and 5-FDHU in humans. 5-FU and 5-FDHU were extracted from biologic matrices by adding sodium acetate, sodium sulfate, and diethyl ether/propanol. Dried samples were reconstituted in a mobile phase (KH2PO4 35 mmol/L, pH 4.0), isocratically eluted with a Hypersil C18 stationary phase (25 cm x 4.6 mm, 10 microm), and detected by a diode array detector (measurement and reference wavelengths, 215 and 360 nm, respectively). 5-Fluorocytosine (internal standard), 5-FDHU, and 5-FU were eluted within 13 minutes of the injection without interferences. Recoveries ranged between 81% to 85% for all compounds, and the method proved to be linear, with a coefficient of linearity of 0.999. The limits of detection and quantification were 3.2 and 16 ng/mL, respectively, and the within-day and between-day CV were less than 10% for both 5-FU and 5-FDHU. The present assay proved to be sufficiently sensitive and specific to evaluate cellular DPD activity and measure 5-FU and 5-FDHU plasma concentrations in cancer patients, thus allowing therapeutic 5-FU monitoring in patients and identification of DPD-deficient subjects at major risk of severe toxicities.
DI PAOLO, Antonello; Danesi, Romano; Ciofi, L; Vannozzi, F; Bocci, Guido; Lastella, M; Amatori, F; Martelloni, Bm; Ibrahim, T; Amadori, D; Falcone, Alfredo; DEL TACCA, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/181557
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 19
social impact