The effects of selective cyclooxygenase (COX) isoform (COX-1, COX-2) inhibition, alone or in combination with nitric-oxide synthase (NOS) blockade, on in vitro tracheal muscle responsiveness to histamine were investigated in healthy and ovalbumin (OVA)-sensitized guinea pigs. Immunohistochemistry showed that COX-1 and COX-2 are constitutively present in normal guinea pig trachea, particularly in the epithelial layer, and that COX-2 expression is enhanced in OVA-sensitized animals both in epithelial and subepithelial tissues. In normal guinea pigs, SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] (COX-1 inhibitor) or DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone] (COX-2 inhibitor) significantly increased the contractile response to histamine, these effects being not additive. NOS inhibition by l-N(G)-nitro-arginine methyl ester (l-NAME) did not affect histamine-induced contraction but reversed the increase caused by COX-1 blockade while not modifying the enhancement associated with COX-2 inhibition. In guinea pigs subjected to OVA sensitization and challenge, COX-2, but not COX-1, inhibition enhanced the motor responses to histamine without any influence by l-NAME. In normal, but not in sensitized animals, the removal of epithelial layer from tracheal preparations abolished the enhancing action of DFU on histamine-mediated contraction. A COX-2-dependent release of prostacyclin (PGI(2)), but not prostaglandin E(2), was observed in tracheal tissues from normal and OVA-sensitized guinea pigs. In conclusion, both COX-1 and COX-2 are constitutive in guinea pig trachea, and COX-2 expression is enhanced by OVA sensitization; in normal animals, epithelial COX-2 exerts a PGI(2)-dependent inhibitory control on tracheal contractility, and this isoform is subjected to upstream regulation by epithelial COX-1 and NOS through a complex interplay; and following antigen sensitization, the inhibitory control on tracheal contractility is maintained by COX-2 induced at subepithelial cell sites.

Role of cyclooxygenase isoforms and nitric-oxide synthase in the modulation of tracheal motor responsiveness in normal and antigen-sensitized guinea-pigs

NIERI, PAOLA;BLANDIZZI, CORRADO;BERNARDINI, NUNZIA;IPPOLITO, CHIARA;DEL TACCA, MARIO;BRESCHI, MARIA CRISTINA
2006-01-01

Abstract

The effects of selective cyclooxygenase (COX) isoform (COX-1, COX-2) inhibition, alone or in combination with nitric-oxide synthase (NOS) blockade, on in vitro tracheal muscle responsiveness to histamine were investigated in healthy and ovalbumin (OVA)-sensitized guinea pigs. Immunohistochemistry showed that COX-1 and COX-2 are constitutively present in normal guinea pig trachea, particularly in the epithelial layer, and that COX-2 expression is enhanced in OVA-sensitized animals both in epithelial and subepithelial tissues. In normal guinea pigs, SC-560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole] (COX-1 inhibitor) or DFU [5,5-dimethyl-3-(3-fluorophenyl)-4-(4-methylsulphonyl)phenyl-2(5H)-furanone] (COX-2 inhibitor) significantly increased the contractile response to histamine, these effects being not additive. NOS inhibition by l-N(G)-nitro-arginine methyl ester (l-NAME) did not affect histamine-induced contraction but reversed the increase caused by COX-1 blockade while not modifying the enhancement associated with COX-2 inhibition. In guinea pigs subjected to OVA sensitization and challenge, COX-2, but not COX-1, inhibition enhanced the motor responses to histamine without any influence by l-NAME. In normal, but not in sensitized animals, the removal of epithelial layer from tracheal preparations abolished the enhancing action of DFU on histamine-mediated contraction. A COX-2-dependent release of prostacyclin (PGI(2)), but not prostaglandin E(2), was observed in tracheal tissues from normal and OVA-sensitized guinea pigs. In conclusion, both COX-1 and COX-2 are constitutive in guinea pig trachea, and COX-2 expression is enhanced by OVA sensitization; in normal animals, epithelial COX-2 exerts a PGI(2)-dependent inhibitory control on tracheal contractility, and this isoform is subjected to upstream regulation by epithelial COX-1 and NOS through a complex interplay; and following antigen sensitization, the inhibitory control on tracheal contractility is maintained by COX-2 induced at subepithelial cell sites.
2006
Nieri, Paola; Martinelli, C; Blandizzi, Corrado; Bernardini, Nunzia; Greco, R; Ippolito, Chiara; DEL TACCA, Mario; Breschi, MARIA CRISTINA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181809
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact