A new type of silicon device has been realized that has many properties, comparable to, or better than, a conventional PMT (Photomultiplier Tube). This paper presents the first results of using these photodetectors in place of a PMT in the readout of scintillators for possible PET (Positron Emission Tomography) applications. This device, the Silicon Photomultiplier (SiPM), is effectively an avalanche photodiode operated in Geiger mode. In Geiger-mode detectors, a very large current signal is produced regardless of the size of the input, giving just logical rather than proportional information. However, the SiPM is subdivided into a large number (1440) A microcells that act as independent and virtually identical Geiger-mode photodiodes. The outputs of all these individual microcells are connected so that the total output signal is the sum of the signals from all of the microcells that were activated. In this way proportional information can be obtained. As a consequence of their design, these detectors have potentially very fast timing, high gain (10(5) - 10(6)) at low bias voltage (similar to 50 V), a high quantum efficiency (35% at 500 nm), excellent single photoelectron resolution and are cheap to manufacture. Here we present results obtained with this new photodetector when used with pulsed LED and scintillator pixels.

First results of scintillator readout with silicon photomultiplier

BELCARI, NICOLA;DEL GUERRA, ALBERTO;
2006-01-01

Abstract

A new type of silicon device has been realized that has many properties, comparable to, or better than, a conventional PMT (Photomultiplier Tube). This paper presents the first results of using these photodetectors in place of a PMT in the readout of scintillators for possible PET (Positron Emission Tomography) applications. This device, the Silicon Photomultiplier (SiPM), is effectively an avalanche photodiode operated in Geiger mode. In Geiger-mode detectors, a very large current signal is produced regardless of the size of the input, giving just logical rather than proportional information. However, the SiPM is subdivided into a large number (1440) A microcells that act as independent and virtually identical Geiger-mode photodiodes. The outputs of all these individual microcells are connected so that the total output signal is the sum of the signals from all of the microcells that were activated. In this way proportional information can be obtained. As a consequence of their design, these detectors have potentially very fast timing, high gain (10(5) - 10(6)) at low bias voltage (similar to 50 V), a high quantum efficiency (35% at 500 nm), excellent single photoelectron resolution and are cheap to manufacture. Here we present results obtained with this new photodetector when used with pulsed LED and scintillator pixels.
2006
Herbert, Dj; Saveliev, V; Belcari, Nicola; D'Ascenzo, N; DEL GUERRA, Alberto; Golovin, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181906
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 67
social impact