The spectral density of the fluctuations of an underdamped, single-well, nonlinear oscillator driven by a random force has been investigated. Electronic analog experiments have demonstrated the existence of a narrow spectral peak at zero frequency; such a peak only appears, however, in those cases where the potential is non-centro-symmetric. The evolution of the peak with variation of a parameter characterizing the asymmetry of the potential, and with noise intensity, has been investigated both experimentally and theoretically. It is found that the half-width of the peak remains relatively small (of the order of the reciprocal relaxation time) over a broad range of noise intensities. The theory of the peak shape is shown to be in close agreement with experiment. The relationships of the peak to the (apparently similar) zero-frequency peaks observed previously in double-well oscillators, where they are responsible for stochastic resonance, and to the supernarrow spectral peaks found near kinetic phase transitions in periodically driven systems, are discussed.

ZERO-FREQUENCY SPECTRAL PEAKS OF UNDERDAMPED NONLINEAR OSCILLATORS WITH ASYMMETRIC POTENTIALS

MANNELLA, RICCARDO;
1991

Abstract

The spectral density of the fluctuations of an underdamped, single-well, nonlinear oscillator driven by a random force has been investigated. Electronic analog experiments have demonstrated the existence of a narrow spectral peak at zero frequency; such a peak only appears, however, in those cases where the potential is non-centro-symmetric. The evolution of the peak with variation of a parameter characterizing the asymmetry of the potential, and with noise intensity, has been investigated both experimentally and theoretically. It is found that the half-width of the peak remains relatively small (of the order of the reciprocal relaxation time) over a broad range of noise intensities. The theory of the peak shape is shown to be in close agreement with experiment. The relationships of the peak to the (apparently similar) zero-frequency peaks observed previously in double-well oscillators, where they are responsible for stochastic resonance, and to the supernarrow spectral peaks found near kinetic phase transitions in periodically driven systems, are discussed.
Dykman, Mi; Mannella, Riccardo; Mcclintock, Pve; Soskin, Sm; Stocks, Ng
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/18344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact