During space flight astronauts show vestibular- related changes in balance, eye movements, and spontaneous and reflex control of cardiovascular, respiratory and gastrointestinal function, sometimes associated with space motion sickness. These symptoms undergo compensation over time. Here we used changes in the expression of two immediate-early gene (IEG) products to identify cellular and molecular changes occurring in autonomic brainstem regions of adult male albino rats killed at different times during the Neurolab Space Mission (STS-90). Both direct effects of gravitational changes, as well as indirect effects of gravitational changes on responses to light exposure were examined. Regions under the direct control of vestibular afferents such as the area postrema and the caudal part of the nucleus of the tractus solitarius (NTSC) were both directly and indirectly affected by gravity changes. These areas showed no changes in the expression of IEG products during exposure to microgravity with respect to ground controls, but did show a significant increase 24 h after return to 1 G (gravity). Exposure to microgravity significantly inhibited gene responses to light exposure seen after return to 1 G. A similar direct and indirect response pattern was also shown by the central nucleus of the amygdala, a basal forebrain structure anatomically and functionally related to the NTS. The rostral part of the NTS (NTSR) receives different afferent projections than the NTSC. This region did not show any direct gravity-related changes in IEG expression, but showed an indirect effect of gravity on IEG responses to light. A similar pattern was also obtained in the intermediate reticular nucleus and the parvocellular reticular nucleus. Two other medullary reticular structures, the dorsal and the ventral medullary reticular nuclei showed a less well defined pattern of responses that differed from those seen in the NTSC and NTSR. The short- and long-lasting molecular changes in medullary and basal forebrain gene expression described here are thought to play an important role in the integration of autonomic and vestibular signals that ultimately regulate neural adaptations to space flight. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.

Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight

D'ASCANIO, PAOLA;POMPEIANO, MARIA
2004-01-01

Abstract

During space flight astronauts show vestibular- related changes in balance, eye movements, and spontaneous and reflex control of cardiovascular, respiratory and gastrointestinal function, sometimes associated with space motion sickness. These symptoms undergo compensation over time. Here we used changes in the expression of two immediate-early gene (IEG) products to identify cellular and molecular changes occurring in autonomic brainstem regions of adult male albino rats killed at different times during the Neurolab Space Mission (STS-90). Both direct effects of gravitational changes, as well as indirect effects of gravitational changes on responses to light exposure were examined. Regions under the direct control of vestibular afferents such as the area postrema and the caudal part of the nucleus of the tractus solitarius (NTSC) were both directly and indirectly affected by gravity changes. These areas showed no changes in the expression of IEG products during exposure to microgravity with respect to ground controls, but did show a significant increase 24 h after return to 1 G (gravity). Exposure to microgravity significantly inhibited gene responses to light exposure seen after return to 1 G. A similar direct and indirect response pattern was also shown by the central nucleus of the amygdala, a basal forebrain structure anatomically and functionally related to the NTS. The rostral part of the NTS (NTSR) receives different afferent projections than the NTSC. This region did not show any direct gravity-related changes in IEG expression, but showed an indirect effect of gravity on IEG responses to light. A similar pattern was also obtained in the intermediate reticular nucleus and the parvocellular reticular nucleus. Two other medullary reticular structures, the dorsal and the ventral medullary reticular nuclei showed a less well defined pattern of responses that differed from those seen in the NTSC and NTSR. The short- and long-lasting molecular changes in medullary and basal forebrain gene expression described here are thought to play an important role in the integration of autonomic and vestibular signals that ultimately regulate neural adaptations to space flight. (C) 2004 IBRO. Published by Elsevier Ltd. All rights reserved.
2004
Pompeiano, O; D'Ascanio, Paola; Balaban, E; Centini, C; Pompeiano, Maria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/184035
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 31
social impact