The $p$-component of the index of a number field $K$, ${ \rm ind}_p(K)$, depends only on the completions of $K$ at the primes over $p$. More precisely, ${\rm ind}_p(K)$ equals the index of the $\mathbb{Q}_p$-algebra $K\otimes\mathbb{Q}_p$. If $K$ is normal, then $K\otimes\mathbb{Q}_p\cong L^n$ for some $L$ normal over $\mathbb{Q}_p$ and some $n$, and we write $I_p(nL)$ for its index. In this paper we describe an effective procedure to compute $I_p(nL)$ for all $n$ and all normal and tamely ramified extensions $L$ of $\mathbb{Q}_p$, hence to determine ${\rm ind}_p(K)$ for all Galois number fields that are tamely ramified at $p$. Using our procedure, we are able to exhibit a counterexample to a conjecture of Nart (1985) on the behaviour of $I_p(nL)$.

On Ore's conjecture and its developments

DEL CORSO, ILARIA;DVORNICICH, ROBERTO
2005-01-01

Abstract

The $p$-component of the index of a number field $K$, ${ \rm ind}_p(K)$, depends only on the completions of $K$ at the primes over $p$. More precisely, ${\rm ind}_p(K)$ equals the index of the $\mathbb{Q}_p$-algebra $K\otimes\mathbb{Q}_p$. If $K$ is normal, then $K\otimes\mathbb{Q}_p\cong L^n$ for some $L$ normal over $\mathbb{Q}_p$ and some $n$, and we write $I_p(nL)$ for its index. In this paper we describe an effective procedure to compute $I_p(nL)$ for all $n$ and all normal and tamely ramified extensions $L$ of $\mathbb{Q}_p$, hence to determine ${\rm ind}_p(K)$ for all Galois number fields that are tamely ramified at $p$. Using our procedure, we are able to exhibit a counterexample to a conjecture of Nart (1985) on the behaviour of $I_p(nL)$.
2005
DEL CORSO, Ilaria; Dvornicich, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/184256
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact