In this report we show that dextromethorphan, a non-opioid cough suppressant, prevents the neurodegeneration of dopaminergic neurons in the substantia nigra of mice treated with diethyldithiocarbamate (DDC) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This effect is further substantiated by the assessment of dopamine (DA) content in the striatum of these animals. Dextromethorphan does not attenuate the striatal DA fall induced by MPTP alone but completely prevents DDC-induced enhancement after the combined treatment. Moreover, a study of DA metabolites has confirmed this neuroprotective property. The striatal levels of serotonin, which were studied as a control neuronal marker, did not change with any of the treatments administered. Furthermore, we show that dextromethorphan reduces the toxicity of glutamate against dopamine neurons in mesencephalic cell cultures. In line with previous data suggesting that dextromethorphan can prevent neuronal damage, our observations supply new evidence regarding the possibility of this compound being of therapeutic use in neurodegenerative diseases.
Dextromethorphan prevents the diethyldithiocarbamate enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice
VAGLINI, FRANCESCA;PARDINI, CARLA MARIA FRANCESCA;BONUCCELLI, UBALDO;CORSINI, GIOVANNI UMBERTO
2003-01-01
Abstract
In this report we show that dextromethorphan, a non-opioid cough suppressant, prevents the neurodegeneration of dopaminergic neurons in the substantia nigra of mice treated with diethyldithiocarbamate (DDC) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This effect is further substantiated by the assessment of dopamine (DA) content in the striatum of these animals. Dextromethorphan does not attenuate the striatal DA fall induced by MPTP alone but completely prevents DDC-induced enhancement after the combined treatment. Moreover, a study of DA metabolites has confirmed this neuroprotective property. The striatal levels of serotonin, which were studied as a control neuronal marker, did not change with any of the treatments administered. Furthermore, we show that dextromethorphan reduces the toxicity of glutamate against dopamine neurons in mesencephalic cell cultures. In line with previous data suggesting that dextromethorphan can prevent neuronal damage, our observations supply new evidence regarding the possibility of this compound being of therapeutic use in neurodegenerative diseases.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.