We prove that if f is a functional on a Hilbert manifold M having critical points with infinite Morse index and co-index, the following fact holds: for every arbitrary choice of an integer a(x) for each critical point x, there exists a Riemannian metric on M such that the gradient flow of f is Morse-Smale and the intersection of the unstable manifold of x with the stable manifold of y has dimension a(x)-a(y). This fact shows that for strongly indefinite functionals, no Morse theory based only on the data (M,f) can exist.

When the Morse index is infinite

ABBONDANDOLO, ALBERTO;MAJER, PIETRO
2004

Abstract

We prove that if f is a functional on a Hilbert manifold M having critical points with infinite Morse index and co-index, the following fact holds: for every arbitrary choice of an integer a(x) for each critical point x, there exists a Riemannian metric on M such that the gradient flow of f is Morse-Smale and the intersection of the unstable manifold of x with the stable manifold of y has dimension a(x)-a(y). This fact shows that for strongly indefinite functionals, no Morse theory based only on the data (M,f) can exist.
Abbondandolo, Alberto; Majer, Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/185470
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact