lWe consider the Landau-Ginzburg-Wilson Hamiltonian with O(n) x O(m) symmetry and compute the critical exponents at all fixed points to O(n(-2)) and to O(epsilon (3)) in a epsilon = 4 - d expansion. We also consider the corresponding non-linear or-model and determine the fixed points and the critical exponents to O(<(<epsilon>)over tilde>(2)) in the <(<epsilon>)over tilde> = d - 2 expansion. Using these results, we draw quite general conclusions on the fixed-point structure of models with O(n) x O(m) symmetry for n large and all 2 less than or equal to d less than or equal to 4. (C) 2001 Elsevier Science B.V. All rights reserved.

Large-n critical behavior of O(n) x O(m) spin models

ROSSI, PAOLO;VICARI, ETTORE
2001-01-01

Abstract

lWe consider the Landau-Ginzburg-Wilson Hamiltonian with O(n) x O(m) symmetry and compute the critical exponents at all fixed points to O(n(-2)) and to O(epsilon (3)) in a epsilon = 4 - d expansion. We also consider the corresponding non-linear or-model and determine the fixed points and the critical exponents to O(<()over tilde>(2)) in the <()over tilde> = d - 2 expansion. Using these results, we draw quite general conclusions on the fixed-point structure of models with O(n) x O(m) symmetry for n large and all 2 less than or equal to d less than or equal to 4. (C) 2001 Elsevier Science B.V. All rights reserved.
2001
Pelissetto, A; Rossi, Paolo; Vicari, Ettore
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/186150
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 63
social impact