In this paper we prove that a commuting family of continuous self-maps of a bounded convex domain in C(n) which are holomorphic in the interior has a common fixed point. The proof makes use of three basic ingredients: iteration theory of holomorphic maps, a precise description of the structure of the boundary of a convex domain, and a similar result for commuting families of self-maps of a hyperbolic domain of a compact Riemann surface.

COMMON FIXED-POINTS IN HYPERBOLIC RIEMANN SURFACES AND CONVEX DOMAINS

ABATE, MARCO;
1991-01-01

Abstract

In this paper we prove that a commuting family of continuous self-maps of a bounded convex domain in C(n) which are holomorphic in the interior has a common fixed point. The proof makes use of three basic ingredients: iteration theory of holomorphic maps, a precise description of the structure of the boundary of a convex domain, and a similar result for commuting families of self-maps of a hyperbolic domain of a compact Riemann surface.
1991
Abate, Marco; Vigue, Jp
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/18675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact