This paper deals with a generalization of a technique already proposed by the authors for obtaining an effective estimation of the spectral accuracy in some regular and non regular Sturm-Liouville problems. The algorithm looks like a classical extrapolation process, but, unlike such a procedure, it does not require further approximations of the eigenvalues with different stepsize: for this reason it benefits from a moderate computational cost. Numerical experiments confirm the effectiveness of the suggested approach.

A quasi-extrapolation procedure for error estimation of numerical methods in Sturm-Liouville eigenproblems

GHELARDONI, PAOLO;GHERI, GIOVANNI;
2004-01-01

Abstract

This paper deals with a generalization of a technique already proposed by the authors for obtaining an effective estimation of the spectral accuracy in some regular and non regular Sturm-Liouville problems. The algorithm looks like a classical extrapolation process, but, unlike such a procedure, it does not require further approximations of the eigenvalues with different stepsize: for this reason it benefits from a moderate computational cost. Numerical experiments confirm the effectiveness of the suggested approach.
2004
Ghelardoni, Paolo; Gheri, Giovanni; Marletta, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/187765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact