Purpose The anticancer drug 5-fluorouracile (5-FU) which is indicated for the treatment of a variety of solid malignancies such as colorectal, breast, head and neck neoplasms is extensively biotransformed to 5- fluoro-5,6-dihydrouracil (5-FDHU) by the dihydropyrimidine deshydrogenase enzyme (DPD). DPD deficiency is recognized as an important risk factor, predisposing patient to undergo severe/lethal toxicities. To date, relationships between 5-FU, 5-FDHU and toxicity following iv bolus administration has not been studied using the population pharmacokinetics approach. Methods Retrospective pharmacokinetic data of 5-FU and 5-FDHU from 127 colorectal cancer patients were used for the population pharmacokinetic analysis. Treatment schedule consisted of an adjuvant therapy with 5-FU plus leucovorin. 5-FU and 5-FDHU complete plasma profiles recorded on day-1 of the first chemotherapy cycle were modeled simultaneously using NONMEM software. Gastro-intestinal adverse events graded according to the WHO criteria were recorded after the first cycle. A population logistic regression model was developed to identify predictive factors of these adverse events. Results A three-compartment pharmacokinetic mixture model best described 5-FU and 5-FDHU kinetics profiles. Linear and saturated elimination from the central compartment of 5-FU and a linear elimination from the 5-FDHU compartment were used. A bimodal distribution of the intercompartmental clearance was observed allowing two subpopulation with high (17 L/h) and low values (3.35 L/h). DPD-phenotype is suspected to explain this mixture. No covariates were introduced in the final model. Also, no relationship was found between maximal metabolism rate and DPD-phenotype. Predictive factors associated with occurrence of high grade gastro-intestinal adverse events were gender, dose and lean body mass suggesting serious cautions with the BSA- weighted dose for women. For the low-grade toxicities, 5-FU area under curve was predictive for woman and 5-FDHU area under curve for men. 3 Conclusion A population pharmacokinetic mixture model was developed to describe kinetic profiles of 5-FU and its major metabolite. This model has significant implications, to identify patients with potentially low DPD phenotype requiring earlier adjustment of the 5-FU dose. Also this analysis highlights the need for developing alternative dosing-scheme for women.

Population pharmacokinetic analysis of 5-FU and 5-FDHU in colorectal cancer patients: search for biomarkers associated with gastro-intestinal toxicity

DI PAOLO, ANTONELLO;BOCCI, GUIDO;DANESI, ROMANO;
2012-01-01

Abstract

Purpose The anticancer drug 5-fluorouracile (5-FU) which is indicated for the treatment of a variety of solid malignancies such as colorectal, breast, head and neck neoplasms is extensively biotransformed to 5- fluoro-5,6-dihydrouracil (5-FDHU) by the dihydropyrimidine deshydrogenase enzyme (DPD). DPD deficiency is recognized as an important risk factor, predisposing patient to undergo severe/lethal toxicities. To date, relationships between 5-FU, 5-FDHU and toxicity following iv bolus administration has not been studied using the population pharmacokinetics approach. Methods Retrospective pharmacokinetic data of 5-FU and 5-FDHU from 127 colorectal cancer patients were used for the population pharmacokinetic analysis. Treatment schedule consisted of an adjuvant therapy with 5-FU plus leucovorin. 5-FU and 5-FDHU complete plasma profiles recorded on day-1 of the first chemotherapy cycle were modeled simultaneously using NONMEM software. Gastro-intestinal adverse events graded according to the WHO criteria were recorded after the first cycle. A population logistic regression model was developed to identify predictive factors of these adverse events. Results A three-compartment pharmacokinetic mixture model best described 5-FU and 5-FDHU kinetics profiles. Linear and saturated elimination from the central compartment of 5-FU and a linear elimination from the 5-FDHU compartment were used. A bimodal distribution of the intercompartmental clearance was observed allowing two subpopulation with high (17 L/h) and low values (3.35 L/h). DPD-phenotype is suspected to explain this mixture. No covariates were introduced in the final model. Also, no relationship was found between maximal metabolism rate and DPD-phenotype. Predictive factors associated with occurrence of high grade gastro-intestinal adverse events were gender, dose and lean body mass suggesting serious cautions with the BSA- weighted dose for women. For the low-grade toxicities, 5-FU area under curve was predictive for woman and 5-FDHU area under curve for men. 3 Conclusion A population pharmacokinetic mixture model was developed to describe kinetic profiles of 5-FU and its major metabolite. This model has significant implications, to identify patients with potentially low DPD phenotype requiring earlier adjustment of the 5-FU dose. Also this analysis highlights the need for developing alternative dosing-scheme for women.
2012
Woloch, C; DI PAOLO, Antonello; Marouani, H; Bocci, Guido; Ciccolini, J; Lacarelle, B; Danesi, Romano; Iliadis, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/188953
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact