A set of symmetric, closed, interpolatory integration formulas on the interval [-1, 1] with positive weights and increasing degree of precision is introduced. These formulas, called recursive monotone stable (RMS) formulas, allow applying higher order or compound rules without wasting previously computed functional values. An exhaustive search shows the existence of 27 families of RMS formulas, stemming from the simple trapezoidal rule.

INTERPOLATORY INTEGRATION FORMULAS FOR OPTIMAL COMPOSITION

ROMANI, FRANCESCO
1991

Abstract

A set of symmetric, closed, interpolatory integration formulas on the interval [-1, 1] with positive weights and increasing degree of precision is introduced. These formulas, called recursive monotone stable (RMS) formulas, allow applying higher order or compound rules without wasting previously computed functional values. An exhaustive search shows the existence of 27 families of RMS formulas, stemming from the simple trapezoidal rule.
Favati, P; Lotti, G; Romani, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/18951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact