We isolate a new class of ultrafilters on N, called “quasi-selective” because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of “asymptotic numerosities” for all sets of tuples A ⊆ N^k. Such numerosities are hypernatural numbers that generalize finite cardinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sets of tuples of natural numbers.

Quasi-selective ultrafilters and asymptotic numerosities

DI NASSO, MAURO;FORTI, MARCO
2012

Abstract

We isolate a new class of ultrafilters on N, called “quasi-selective” because they are intermediate between selective ultrafilters and P-points. (Under the Continuum Hypothesis these three classes are distinct.) The existence of quasi-selective ultrafilters is equivalent to the existence of “asymptotic numerosities” for all sets of tuples A ⊆ N^k. Such numerosities are hypernatural numbers that generalize finite cardinalities to countable point sets. Most notably, they maintain the structure of ordered semiring, and, in a precise sense, they allow for a natural extension of asymptotic density to all sets of tuples of natural numbers.
Blass, A; DI NASSO, Mauro; Forti, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/189772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact