Anomaly detection in hyperspectral images has proven valuable in many applications, such as hazardous material and mine detection. The benchmark anomaly detector is the Reed-Xiaoli (RX) detector, which is based on the local multivariate normality of background. The RX algorithm, along with its many modified versions, has been widely explored, and the main concerns identified are related to local background covariance matrix estimation. The small sample size, local background nonhomogeneity, and the presence of target pixels within the estimation window are factors that can deeply affect local background covariance matrix estimation. These critical aspects may occur together in the same operational scenario, and they may strongly impair the detection performance. However, due to their intrinsic difference, these aspects have been typically discussed within different frameworks, disregarding the possible existing connections while developing different approaches to solution. We investigate these critical aspects, along with their impact on the detection process, from an operational detection perspective. The approaches to solution are critically analyzed, discussing possible links and connections. Real hyperspectral data are employed for assessing if the algorithms, designed ad hoc to solve a specific problem, can either handle more complex situations, or bring about further complications.

Improved estimation of local background covariance matrix for anomaly detection in hyperspectral images

MATTEOLI, STEFANIA;DIANI, MARCO;CORSINI, GIOVANNI
2010-01-01

Abstract

Anomaly detection in hyperspectral images has proven valuable in many applications, such as hazardous material and mine detection. The benchmark anomaly detector is the Reed-Xiaoli (RX) detector, which is based on the local multivariate normality of background. The RX algorithm, along with its many modified versions, has been widely explored, and the main concerns identified are related to local background covariance matrix estimation. The small sample size, local background nonhomogeneity, and the presence of target pixels within the estimation window are factors that can deeply affect local background covariance matrix estimation. These critical aspects may occur together in the same operational scenario, and they may strongly impair the detection performance. However, due to their intrinsic difference, these aspects have been typically discussed within different frameworks, disregarding the possible existing connections while developing different approaches to solution. We investigate these critical aspects, along with their impact on the detection process, from an operational detection perspective. The approaches to solution are critically analyzed, discussing possible links and connections. Real hyperspectral data are employed for assessing if the algorithms, designed ad hoc to solve a specific problem, can either handle more complex situations, or bring about further complications.
2010
Matteoli, Stefania; Diani, Marco; Corsini, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/190398
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 81
social impact