We consider the hyperbolic-parabolic singular perturbation problem for a degenerate quasilinear Kirchhoff equation with weak dissipation. This means that the coefficient of the dissipative term tends to zero when t tends to +infinity. We prove that the hyperbolic problem has a unique global solution for suitable values of the parameters. We also prove that the solution decays to zero, as t tends to +infinity, with the same rate of the solution of the limit problem of parabolic type.

Mildly degenerate Kirchhoff equations with weak dissipation: global existence and time decay

GHISI, MARINA;GOBBINO, MASSIMO
2010-01-01

Abstract

We consider the hyperbolic-parabolic singular perturbation problem for a degenerate quasilinear Kirchhoff equation with weak dissipation. This means that the coefficient of the dissipative term tends to zero when t tends to +infinity. We prove that the hyperbolic problem has a unique global solution for suitable values of the parameters. We also prove that the solution decays to zero, as t tends to +infinity, with the same rate of the solution of the limit problem of parabolic type.
2010
Ghisi, Marina; Gobbino, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/190527
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact