The design of Fast Fourier Transform (FFT) integrated architectures for System-on-Chip (SoC) telecom applications is addressed in this paper. After reviewing the FFT processing requirements of wireless and wired Orthogonal Frequency Division Multiplexing (OFDM) standards, including the emerging Multiple Input Multiple Output (MIMO) and OFDM Access (OFDMA) schemes, three FFT architectures are proposed: a fully parallel, a pipelined cascade and an in-place variable-size architecture, which offer different trade-offs among flexibility, processing speed and complexity. Silicon implementation results and comparisons with the state-of-the-art prove that each macrocell outperforms the known works for a target application. The fully parallel is optimized for throughput requirements up to several GSamples/s enabling Ultra-wideband (UWB) communications by using all channels foreseen in the standard. The pipelined cascade macrocell minimizes complexity for large size FFTs sustaining throughput up to 100 MSamples/s. The in-place variable-size FFT macrocell stands for its flexibility by allowing run-time reconfigurability required in OFDMA schemes while attaining the required throughput to support MIMO communications. The three architectures are also compared with common case-studies and target technology.

Design and Comparison of FFT VLSI Architectures for SoC Telecom Applications with Different Flexibility, Speed and Complexity Trade-Offs

SAPONARA, SERGIO;FANUCCI, LUCA;
2012

Abstract

The design of Fast Fourier Transform (FFT) integrated architectures for System-on-Chip (SoC) telecom applications is addressed in this paper. After reviewing the FFT processing requirements of wireless and wired Orthogonal Frequency Division Multiplexing (OFDM) standards, including the emerging Multiple Input Multiple Output (MIMO) and OFDM Access (OFDMA) schemes, three FFT architectures are proposed: a fully parallel, a pipelined cascade and an in-place variable-size architecture, which offer different trade-offs among flexibility, processing speed and complexity. Silicon implementation results and comparisons with the state-of-the-art prove that each macrocell outperforms the known works for a target application. The fully parallel is optimized for throughput requirements up to several GSamples/s enabling Ultra-wideband (UWB) communications by using all channels foreseen in the standard. The pipelined cascade macrocell minimizes complexity for large size FFTs sustaining throughput up to 100 MSamples/s. The in-place variable-size FFT macrocell stands for its flexibility by allowing run-time reconfigurability required in OFDMA schemes while attaining the required throughput to support MIMO communications. The three architectures are also compared with common case-studies and target technology.
Saponara, Sergio; Rovini, Massimo; Fanucci, Luca; Karachalios, Athanasios; Lentaris, George; Reisis, Dionysios
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/190592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact