An efficient strategy for reducing the signature of an antenna is to substitute the conventional solid ground plane with a patterned ground plane thus letting the incoming energy to pass through the structure except over the operating band of the antenna. However, in a real environment, the energy flowing through the FSS (Frequency Selective Surface) can be intercepted by eventual scatterers located behind the antenna, so to nullify the RCS (Radar Cross Section) reduction. To overcome this drawback, a novel composite structure is proposed which is able to dissipate such energy by placing a thin absorbing layer below the FSS ground. It is shown that a careful analysis has to be performed to accomplish this goal since the transparent antenna array and the backing absorber strongly interact and thus they cannot be separately designed. The optimal value of the foam spacer thickness between the FSS ground and the absorbing layer is investigated by an efficient equivalent transmission line approach. Criteria for enlarging the low-RCS band with respect to the free space design are also provided. An antenna array prototype backed by the thin multilayer structure is finally manufactured and tested.

A FREQUENCY SELECTIVE ABSORBING GROUND PLANE FOR LOW-RCS MICROSTRIP ANTENNA ARRAYS

COSTA, FILIPPO;GENOVESI, SIMONE;MONORCHIO, AGOSTINO
2012

Abstract

An efficient strategy for reducing the signature of an antenna is to substitute the conventional solid ground plane with a patterned ground plane thus letting the incoming energy to pass through the structure except over the operating band of the antenna. However, in a real environment, the energy flowing through the FSS (Frequency Selective Surface) can be intercepted by eventual scatterers located behind the antenna, so to nullify the RCS (Radar Cross Section) reduction. To overcome this drawback, a novel composite structure is proposed which is able to dissipate such energy by placing a thin absorbing layer below the FSS ground. It is shown that a careful analysis has to be performed to accomplish this goal since the transparent antenna array and the backing absorber strongly interact and thus they cannot be separately designed. The optimal value of the foam spacer thickness between the FSS ground and the absorbing layer is investigated by an efficient equivalent transmission line approach. Criteria for enlarging the low-RCS band with respect to the free space design are also provided. An antenna array prototype backed by the thin multilayer structure is finally manufactured and tested.
Costa, Filippo; Genovesi, Simone; Monorchio, Agostino
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/190596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 51
social impact