The computational cost, in the bit model of computation, of the evaluation of a real function f(x) in a point x is analyzed, when the number d of correct digits of the result increases asymptotically. We want to study how the cost depends on x also when x approaches a critical point for the function f. We investigate yhe hypotheses under which it is possible to give upper bounds on the cost as functions of "separated variables" d and x, that is as products of the two functions, each of one variable. We examine in particular the case of elementary functions.
Autori interni: | |
Autori: | FAVATI P; LOTTI G; MENCHI O; ROMANI F |
Titolo: | Separable Asymptotic Cost of Evaluating Elementary Functions |
Anno del prodotto: | 2000 |
Digital Object Identifier (DOI): | 10.1023/A:1019101512077 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.