We carried out a model-independent search for light scalar or pseudoscalar particles a's (an example of which is the axion) that couple to two photons by using a photon-regeneration method at high energies allowing a substantial increase in the sensitivity to eV masses. The experimental set-up is based on elements of the CERN West Area Neutrino Facility (WANF) beam Line and the NOMAD neutrino detector. The new particles, if they exist, could be produced through the Primakoff effect in interactions of high energy photons, generated by the 450 GeV protons in the CERN SPS neutrino target, with virtual photons from the WANF horn magnetic field. The particles would penetrate the downstream shielding and would be observed in the NOMAD neutrino detector through their re-conversion into real high energy photons by interacting with the virtual photons from the magnetic field of the NOMAD dipole magnet. From the analysis of the data collected during the 1996 run with 1.08 x 10(19) protons on target, 312 candidate events with energy between 5 and 140 GeV were found. This number is in general agreement with the expectation of 272 +/- 18 background events from standard neutrino processes. A 90 % CL upper limit on the a gamma gamma-coupling g(a gamma gamma) < 1.5 x 10(-4) GeV-1 for a masses up to 40 eV is obtained. (C) 2000 Elsevier Science B.V. All rights reserved. RI Vercesi, Valerio/C-6672-2008; Collazuol, Gianmaria/C-5670-2012; Soler, Paul/E-8464-2011; Moorhead, Gareth/B-6634-2009

Search for eV (pseudo) scalar penetrating particles in the SPS neutrino beam

CAVASINNI, VINCENZO;RODA, CHIARA MARIA ANGELA;
2000

Abstract

We carried out a model-independent search for light scalar or pseudoscalar particles a's (an example of which is the axion) that couple to two photons by using a photon-regeneration method at high energies allowing a substantial increase in the sensitivity to eV masses. The experimental set-up is based on elements of the CERN West Area Neutrino Facility (WANF) beam Line and the NOMAD neutrino detector. The new particles, if they exist, could be produced through the Primakoff effect in interactions of high energy photons, generated by the 450 GeV protons in the CERN SPS neutrino target, with virtual photons from the WANF horn magnetic field. The particles would penetrate the downstream shielding and would be observed in the NOMAD neutrino detector through their re-conversion into real high energy photons by interacting with the virtual photons from the magnetic field of the NOMAD dipole magnet. From the analysis of the data collected during the 1996 run with 1.08 x 10(19) protons on target, 312 candidate events with energy between 5 and 140 GeV were found. This number is in general agreement with the expectation of 272 +/- 18 background events from standard neutrino processes. A 90 % CL upper limit on the a gamma gamma-coupling g(a gamma gamma) < 1.5 x 10(-4) GeV-1 for a masses up to 40 eV is obtained. (C) 2000 Elsevier Science B.V. All rights reserved. RI Vercesi, Valerio/C-6672-2008; Collazuol, Gianmaria/C-5670-2012; Soler, Paul/E-8464-2011; Moorhead, Gareth/B-6634-2009
Astier, P; Autiero, D; Baldisseri, A; Baldo Ceolin, M; Ballocchi, G; Banner, M; Bassompiene, G; Benslama, K; Besson, N; Bird, I; Blumenfeld, B; Bobisut, F; Bouchez, J; Boyd, S; Bueno, A; Bunyatov, S; Camilleri, L; Cardini, A; Cattaneo, Pw; Cavasinni, Vincenzo; Cervera Villanueva, A; Collazuol, G; Conforto, G; Conta, C; Contalbrigo, M; Cousins, R; Daniels, D; Degaudenzi, H; Del Prete, T; De Santo, A; Dignan, T; Di Lella, L; Silva, Ede; Dumarchez, J; Ellis, M; Feldman, Gj; Ferrari, R; Ferrere, D; Flaminio, V; Fraternali, M; Gaillard, Jm; Gangler, E; Geiser, A; Geppert, D; Gibin, D; Gninenko, Sn; Godley, A; Gomez Cadenas, Jj; Gosset, J; Gossling, C; Gouanere, M; Grant, A; Graziani, G; Guglielmi, A; Hagner, C; Hernando, J; Hubbard, D; Hurst, P; Hyett, N; Iacopini, E; Joseph, C; Juget, F; Kirsanov, Mm; Klimov, O; Kokkonen, J; Kovzelev, Av; Krasnikov, Nv; Krasnoperov, A; Kuznetsov, Ve; Lacaprara, S; Lachaud, C; Lakic, B; Lanza, A; La Rotonda, L; Laveder, M; Letessier Selvon, A; Levy, Jm; Linssen, L; Ljubicic, A; Long, J; Lupi, A; Marchionni, A; Martelli, F; Mechain, X; Mendiburu, Jp; Meyer, Jp; Mezzetto, M; Mishra, Sr; Moorhead, Gf; Mossuz, L; Nedelec, P; Nefedov, Y; Nguyen Mau, C; Orestano, D; Pastore, F; Peak, Ls; Pennacchio, E; Pessard, H; Petti, R; Placci, A; Polesello, G; Pollmann, D; Polyarush, Ay; Popov, B; Poulsen, C; Rico, J; Roda, CHIARA MARIA ANGELA; Rubbia, A; Salvatore, F; Schahmaneche, K; Schmidt, B; Schmidt, T; Sevior, M; Sillou, D; Soler, Fjp; Sozzi, G; Steele, D; Steininger, M; Stiegler, U; Stipcevic, M; Stolarczyk, T; Tareb Reyes, M; Taylor, Gn; Tereshchenko, V; Toropin, An; Touchard, Am; Tovey, Sn; Tran, Mt; Tsesmelis, E; Ulrichs, J; Vacavant, L; Valdata Nappi, M; Valuev, V; Vannucci, F; Varvell, Ke; Veltri, M; Vercesi, V; Verkindt, D; Vieira, Jm; Vinogradova, T; Volkov, Sa; Weber, Fv; Weisse, T; Wilson, Ff; Winton, Lj; Yabsley, Bd; Zaccone, H; Zioutas, K; Zuber, K; Zuccon, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/191220
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact