Gastrointestinal (GI) dysfunction occurs frequently in early Parkinson's disease (PD) and it is supposed to anticipate motor symptoms. About 80% of PD patients suffer from constipation before the onset of movement disorders. Despite such a high prevalence of gut impairment in PD, the molecular mechanisms remain poorly investigated. This is also due to the scarcity of experimental studies. In the present work, we tried to reproduce digestive abnormalities observed in PD patients by administering the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) to C57BL mice. We show that in these mice, MPTP (20mg/kg × 3) while producing the classic striatal dopamine (DA) denervation, persistently delays colonic motility, produces constipation, and reduces the number of enteric TH-positive neurons. The loss of TH-positive cells in the gut is selectively due to the disappearance of DA neurons within both myenteric and mostly submucosal plexus in the intestine, while no change is detected in the esophagus and stomach. In contrast, norepinephrine (NE) neurons are not affected. These data were confirmed by immunohistochemistry and by HPLC showing the significant loss of DA levels while NE and 5-HT content was not affected. Dopamine cell loss was associated with increased α-synuclein levels. These functional, biochemical, and morphological findings extend the PD-mimicking effects of MPTP to GI dysfunctions and provide a useful experimental model to understand gut dysfunction in PD and to find effective treatments for digestive symptoms.

MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut

NATALE, GIANFRANCO;FORNAI, FRANCESCO
2010-01-01

Abstract

Gastrointestinal (GI) dysfunction occurs frequently in early Parkinson's disease (PD) and it is supposed to anticipate motor symptoms. About 80% of PD patients suffer from constipation before the onset of movement disorders. Despite such a high prevalence of gut impairment in PD, the molecular mechanisms remain poorly investigated. This is also due to the scarcity of experimental studies. In the present work, we tried to reproduce digestive abnormalities observed in PD patients by administering the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) to C57BL mice. We show that in these mice, MPTP (20mg/kg × 3) while producing the classic striatal dopamine (DA) denervation, persistently delays colonic motility, produces constipation, and reduces the number of enteric TH-positive neurons. The loss of TH-positive cells in the gut is selectively due to the disappearance of DA neurons within both myenteric and mostly submucosal plexus in the intestine, while no change is detected in the esophagus and stomach. In contrast, norepinephrine (NE) neurons are not affected. These data were confirmed by immunohistochemistry and by HPLC showing the significant loss of DA levels while NE and 5-HT content was not affected. Dopamine cell loss was associated with increased α-synuclein levels. These functional, biochemical, and morphological findings extend the PD-mimicking effects of MPTP to GI dysfunctions and provide a useful experimental model to understand gut dysfunction in PD and to find effective treatments for digestive symptoms.
2010
Natale, Gianfranco; Kastsiushenka, O; Fulceri, F; Ruggieri, S; Paparelli, Antonio; Fornai, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/191425
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 76
social impact