The design and characterization in high-voltage (HV)-CMOS technology of an innovative intelligent power switch (IPS) for harsh automotive applications is proposed in this paper. To safely handle the ordinary and extraordinary automotive electrical and environmental conditions, a systematic design flow is followed: several design solutions are presented at the architectural and circuital level, integrating on-chip self-diagnostic capabilities and full protection against the high voltage and reverse polarity, the effects of wiring parasitics, and the over-current and over-temperature phenomena. Moreover, the current slope and soft start integrated techniques ensure a low electromagnetic interference, and the IPS is also configurable to efficiently drive different interchangeable loads. The innovative IPS has been implemented in a 0.35-mu m HV-CMOS technology and has been embedded in mechatronic third generation brush-holder regulator system-on-chip for an automotive alternator. The electrical simulations and experimental characterization and the testing at component and on-board system levels prove that the proposed design allows a compact and smart power switch realization facing the harshest automotive conditions.

Design and Test of an HV-CMOS Intelligent Power Switch With Integrated Protections and Self-Diagnostic for Harsh Automotive Applications

SAPONARA, SERGIO;FANUCCI, LUCA
2011

Abstract

The design and characterization in high-voltage (HV)-CMOS technology of an innovative intelligent power switch (IPS) for harsh automotive applications is proposed in this paper. To safely handle the ordinary and extraordinary automotive electrical and environmental conditions, a systematic design flow is followed: several design solutions are presented at the architectural and circuital level, integrating on-chip self-diagnostic capabilities and full protection against the high voltage and reverse polarity, the effects of wiring parasitics, and the over-current and over-temperature phenomena. Moreover, the current slope and soft start integrated techniques ensure a low electromagnetic interference, and the IPS is also configurable to efficiently drive different interchangeable loads. The innovative IPS has been implemented in a 0.35-mu m HV-CMOS technology and has been embedded in mechatronic third generation brush-holder regulator system-on-chip for an automotive alternator. The electrical simulations and experimental characterization and the testing at component and on-board system levels prove that the proposed design allows a compact and smart power switch realization facing the harshest automotive conditions.
Costantino, N; Serventi, R; Tinfena, F; D'Abramo, P; Chassard, P; Tisserand, P; Saponara, Sergio; Fanucci, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/192886
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 52
social impact