The paper presents a multi-processor architecture for real-time and low-power image and video enhancement applications. Differently from other state-of-the-art parallel architectures the proposed solution is composed of heterogeneous tiles. The tiles have computational and memory capabilities, support different algorithmic classes and are connected by a novel Network-on-Chip (NoC) infrastructure. The proposed packet-switched data transfer scheme avoids communication bottlenecks when more tiles are working concurrently. The functional performances of the NoC-based multi-processor architecture are assessed by presenting the achieved results when the platform is programmed to support different enhancement algorithms for still images or videos. The implementation complexity of the NoC-based multi-tile platform, integrated in 65 nm CMOS technology, is reported and discussed
A multi-processor NoC-based architecture for real-time image/video enhancement
SAPONARA, SERGIO;FANUCCI, LUCA;
2013-01-01
Abstract
The paper presents a multi-processor architecture for real-time and low-power image and video enhancement applications. Differently from other state-of-the-art parallel architectures the proposed solution is composed of heterogeneous tiles. The tiles have computational and memory capabilities, support different algorithmic classes and are connected by a novel Network-on-Chip (NoC) infrastructure. The proposed packet-switched data transfer scheme avoids communication bottlenecks when more tiles are working concurrently. The functional performances of the NoC-based multi-processor architecture are assessed by presenting the achieved results when the platform is programmed to support different enhancement algorithms for still images or videos. The implementation complexity of the NoC-based multi-tile platform, integrated in 65 nm CMOS technology, is reported and discussedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.