In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time-consuming than other feature selection methods.

A modified fuzzy C-means algorithm for feature selection

FROSINI, GRAZIANO;LAZZERINI, BEATRICE;MARCELLONI, FRANCESCO
2000-01-01

Abstract

In this paper we propose a novel method for feature selection based on a modified fuzzy C-means algorithm with supervision (MFCMS). MFCMS adopts an appropriately modified version of the objective function used by the classic fuzzy C-means. We applied MFCMS to some real-world pattern classification benchmarks. To test the effectiveness of MFCMS as feature selector, we used the well-known k-nearest neighbor as learning algorithm. In our experiments we found that the classification performance using the set of features selected by MFCMS is better than that using all the original features. Furthermore, our approach proved to be less time-consuming than other feature selection methods.
2000
0780362748
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/193961
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact