In scene-based nonuniformity correction (NUC) methods for infrared focal-plane array cameras, the problem of ghosting artifacts widely affects the sensitivity of the imaging system and visibly decreases the image quality. Ghosting artifacts can also degrade the performance of several applications, such as target detection and tracking. We carried out a detailed analysis of the problem using a well-established NUC technique: the least mean square Scribner's algorithm. In order to solve some drawbacks of the original Scribner's algorithm, we introduced in the scheme a new technique that mitigates ghosting. Such technique relies on the employment of an edge-preserving spatial filter for the purpose of computing reliable spatial estimates. We tested the effectiveness of the new technique applying the improved NUC method to an experimental IR sequence of frames acquired in the laboratory. Finally, the performance of the proposed method was discussed and compared to that yielded by a well-established deghosting technique. c 2010 Society of Photo-Optical Instrumentation Engineers. [DOI:10.1117/1.3425660]

Bilateral filter-based adaptive nonuniformity correction for infrared focal-plane array systems

DIANI, MARCO;CORSINI, GIOVANNI
2010

Abstract

In scene-based nonuniformity correction (NUC) methods for infrared focal-plane array cameras, the problem of ghosting artifacts widely affects the sensitivity of the imaging system and visibly decreases the image quality. Ghosting artifacts can also degrade the performance of several applications, such as target detection and tracking. We carried out a detailed analysis of the problem using a well-established NUC technique: the least mean square Scribner's algorithm. In order to solve some drawbacks of the original Scribner's algorithm, we introduced in the scheme a new technique that mitigates ghosting. Such technique relies on the employment of an edge-preserving spatial filter for the purpose of computing reliable spatial estimates. We tested the effectiveness of the new technique applying the improved NUC method to an experimental IR sequence of frames acquired in the laboratory. Finally, the performance of the proposed method was discussed and compared to that yielded by a well-established deghosting technique. c 2010 Society of Photo-Optical Instrumentation Engineers. [DOI:10.1117/1.3425660]
Rossi, A; Diani, Marco; Corsini, Giovanni
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/194404
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 24
social impact