We study the differentiable structure and the homotopy type of some spaces related to the Grassmannian of closed linear subspaces of an infinite dimensional Hilbert space, such as the space of Fredholm pairs, the Grassmannian of compact perturbations of a given space, and the essential Grassmannians. We define a determinant bundle over the space of Fredholm pairs. We lift the composition of Fredholm operators to the Quillen determinant bundle, and we show how this map can be used in several constructions involving the determinant bundle over the space of Fredholm pairs. We deduce some properties of suitable orientation bundles.

Infinite dimensional Grassmannians

ABBONDANDOLO, ALBERTO;MAJER, PIETRO
2009-01-01

Abstract

We study the differentiable structure and the homotopy type of some spaces related to the Grassmannian of closed linear subspaces of an infinite dimensional Hilbert space, such as the space of Fredholm pairs, the Grassmannian of compact perturbations of a given space, and the essential Grassmannians. We define a determinant bundle over the space of Fredholm pairs. We lift the composition of Fredholm operators to the Quillen determinant bundle, and we show how this map can be used in several constructions involving the determinant bundle over the space of Fredholm pairs. We deduce some properties of suitable orientation bundles.
2009
Abbondandolo, Alberto; Majer, Pietro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/194592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact