A key focus of research on pancreatic ductal adenocarcinoma (PDAC) is identifying new techniques to tailor gemcitabine and 5-fluorouracil treatments. Availability of tumor tissue is critical for the accurate assessment of gene expression, and laser microdissection (LMD) and primary cell cultures may be useful tools to separate tumor cells from the stromal reaction. The aim of this study was (1) to address the genetic profile relevant to drug activity and ( 2) to evaluate differences between microdissected and non-microdissected tumors, normal tissues, and primary cell cultures. Quantitative PCR of seven key genes was performed on mRNA from 113 microdissected and 28 non-microdissected tumors, a pool of normal tissues and four established primary cell lines. Protein expression was evaluated by western blot and immunocytochemistry and cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. LMD allowed the analysis of 110 samples and revealed significant differences in mRNA levels between microdissected tumors and normal tissues, as well as between non-microdissected and microdissected tumors from the same patients. In contrast, primary cell lines showed similar expression profiles with respect to their respective microdissected tumors. In particular, expression levels of human equilibrative nucleoside transporter-1 and thymydilate synthase were significantly related to gemcitabine and 5- fluorouracil cytotoxicity. We conclude that LMD is a reliable technique for mRNA extraction, and allows detection of significant differences in the expression of specific target genes when compared to non-microdissected specimens and normal tissues. Moreover, expression levels in microdissected tumors are similar to those observed in primary tumor cell cultures, both at mRNA and protein level, and are related to drug chemosensitivity. The use of these ex vivo techniques for molecular analysis of tumors therefore appears to be of some value in implementing the clinical management of PDAC.

Laser microdissection and primary cell cultures improve pharmacogenetic analysis in pancreatic adenocarcinoma

BOGGI, UGO;DEL TACCA, MARIO;BEVILACQUA, GENEROSO;MOSCA, FRANCO;DANESI, ROMANO;CAMPANI, DANIELA
2008-01-01

Abstract

A key focus of research on pancreatic ductal adenocarcinoma (PDAC) is identifying new techniques to tailor gemcitabine and 5-fluorouracil treatments. Availability of tumor tissue is critical for the accurate assessment of gene expression, and laser microdissection (LMD) and primary cell cultures may be useful tools to separate tumor cells from the stromal reaction. The aim of this study was (1) to address the genetic profile relevant to drug activity and ( 2) to evaluate differences between microdissected and non-microdissected tumors, normal tissues, and primary cell cultures. Quantitative PCR of seven key genes was performed on mRNA from 113 microdissected and 28 non-microdissected tumors, a pool of normal tissues and four established primary cell lines. Protein expression was evaluated by western blot and immunocytochemistry and cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. LMD allowed the analysis of 110 samples and revealed significant differences in mRNA levels between microdissected tumors and normal tissues, as well as between non-microdissected and microdissected tumors from the same patients. In contrast, primary cell lines showed similar expression profiles with respect to their respective microdissected tumors. In particular, expression levels of human equilibrative nucleoside transporter-1 and thymydilate synthase were significantly related to gemcitabine and 5- fluorouracil cytotoxicity. We conclude that LMD is a reliable technique for mRNA extraction, and allows detection of significant differences in the expression of specific target genes when compared to non-microdissected specimens and normal tissues. Moreover, expression levels in microdissected tumors are similar to those observed in primary tumor cell cultures, both at mRNA and protein level, and are related to drug chemosensitivity. The use of these ex vivo techniques for molecular analysis of tumors therefore appears to be of some value in implementing the clinical management of PDAC.
2008
Funel, N; Giovannetti, E; DEL CHIARO, M; Mey, V; Pollina, Le; Nannizzi, S; Boggi, Ugo; Ricciardi, S; DEL TACCA, Mario; Bevilacqua, Generoso; Mosca, Franco; Danesi, Romano; Campani, Daniela
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/194742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact