We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be < 1051 erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate similar to 1 yr-1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.

Early evolution of newly born magnetars with a strong toroidal field

SHORE, STEVEN NEIL;
2009-01-01

Abstract

We present a state-of-the-art scenario for newly born magnetars as strong sources of gravitational waves (GWs) in the early days after formation. We address several aspects of the astrophysics of rapidly rotating, ultra-magnetized neutron stars (NSs), including early cooling before transition to superfluidity, the effects of the magnetic field on the equilibrium shape of NSs, the internal dynamical state of a fully degenerate, oblique rotator and the strength of the electromagnetic torque on the newly born NS. We show that our scenario is consistent with recent studies of supernova remnant surrounding Anomalous X-ray Pulsars (AXPs) and Soft Gamma-Ray Repeaters (SGRs) in the Galaxy that constrains the electromagnetic energy input from the central NS to be < 1051 erg. We further show that if this condition is met, then the GW signal from such sources is potentially detectable with the forthcoming generation of GW detectors up to Virgo cluster distances where an event rate similar to 1 yr-1 can be estimated. Finally, we point out that the decay of an internal magnetic field in the 1016 G range couples strongly with the NS cooling at very early stages, thus significantly slowing down both processes: the field can remain this strong for at least 103 yr, during which the core temperature stays higher than several times 108 K.
2009
Dall'Osso, S; Shore, STEVEN NEIL; Stella, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/194908
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 110
social impact