A novel mission concept based on a hybrid low-thrust propulsion system is proposed and discussed. A solar electric propulsion thruster is coupled with an auxiliary system providing an inverse square radial thrust In this way the spacecraft is virtually subjected to a reduced gravitational solar force. The primary purpose of this paper is to quantify the impact of the reduced solar force on the propellant consumption for an interplanetary mission. To this end the steering law that minimizes the propellant consumption for a circle-to-circle rendezvous problem is found using an indirect approach. The hybrid system is compared with a conventional solar electric thruster in terms of payload mass fraction deliverable for a given mission. A tradeoff between payload size and trip time is established.
Trajectory Design with Hybrid Low-Thrust Propulsion System
MENGALI, GIOVANNI;QUARTA, ALESSANDRO ANTONIO
2007-01-01
Abstract
A novel mission concept based on a hybrid low-thrust propulsion system is proposed and discussed. A solar electric propulsion thruster is coupled with an auxiliary system providing an inverse square radial thrust In this way the spacecraft is virtually subjected to a reduced gravitational solar force. The primary purpose of this paper is to quantify the impact of the reduced solar force on the propellant consumption for an interplanetary mission. To this end the steering law that minimizes the propellant consumption for a circle-to-circle rendezvous problem is found using an indirect approach. The hybrid system is compared with a conventional solar electric thruster in terms of payload mass fraction deliverable for a given mission. A tradeoff between payload size and trip time is established.File | Dimensione | Formato | |
---|---|---|---|
JGCD_30-2-2007(a).pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.