The aim of the present study was to investigate the corneal protective and healing properties of arabinogalactan (AG), a natural polysaccharide present in conifers of the genus Larix (Larch). AG was tested in comparison with other two polysaccharides possessing well-established properties in the treatment of dry eye: tamarind seed polysaccharide and hyaluronic acid. Methods: The AG formulation was subjected to the following investigations: rheologic measurements; evaluation of mucoadhesive properties by rheologic interaction with mucin; ferning test; and in vivo evaluation on rabbits, including treatment of an experimental dry eye; evaluation of the preocular retention; and evaluation of healing rate of experimental corneal wound. Results: AG dispersions showed a newtonian nonviscous behavior, eta=1.6 mPa center dot s for 10% w/w solution; it possessed good mucoadhesive properties useful for retention on the eye surface. In fact, a prolonged time of residence in rabbit eyes was ascertained using fluorescein-labeled AG. Five percent (5.0%) w/w AG exerted a good protective effect against the appearance of corneal dry spots. It also reduced significantly the healing time of an experimental corneal lesion since 27 h after the first treatment. Conclusions: These findings suggest that AG may be a potential therapeutic product for dry eye protection and for the treatment of corneal wounds.

Larch arabinogalactan for dry eye protection and treatment of corneal lesions: investigation in rabbits

BURGALASSI, SUSI
Primo
;
NICOSIA, NADIA;MONTI, DANIELA;CHETONI, PATRIZIA
2007-01-01

Abstract

The aim of the present study was to investigate the corneal protective and healing properties of arabinogalactan (AG), a natural polysaccharide present in conifers of the genus Larix (Larch). AG was tested in comparison with other two polysaccharides possessing well-established properties in the treatment of dry eye: tamarind seed polysaccharide and hyaluronic acid. Methods: The AG formulation was subjected to the following investigations: rheologic measurements; evaluation of mucoadhesive properties by rheologic interaction with mucin; ferning test; and in vivo evaluation on rabbits, including treatment of an experimental dry eye; evaluation of the preocular retention; and evaluation of healing rate of experimental corneal wound. Results: AG dispersions showed a newtonian nonviscous behavior, eta=1.6 mPa center dot s for 10% w/w solution; it possessed good mucoadhesive properties useful for retention on the eye surface. In fact, a prolonged time of residence in rabbit eyes was ascertained using fluorescein-labeled AG. Five percent (5.0%) w/w AG exerted a good protective effect against the appearance of corneal dry spots. It also reduced significantly the healing time of an experimental corneal lesion since 27 h after the first treatment. Conclusions: These findings suggest that AG may be a potential therapeutic product for dry eye protection and for the treatment of corneal wounds.
2007
Burgalassi, Susi; Nicosia, Nadia; Monti, Daniela; G., Falcone; E., Boldrini; Chetoni, Patrizia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/195293
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 23
social impact