We study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same mu only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index mu approximately 2 corresponding to ideal 1/f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1/f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.

Spontaneous brain activity as a source of ideal 1/f noise

MENICUCCI D;FRONZONI, LEONE;GEMIGNANI, ANGELO;
2009-01-01

Abstract

We study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same mu only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index mu approximately 2 corresponding to ideal 1/f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1/f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.
2009
Allegrini, P; Menicucci, D; Bedini, R; Fronzoni, Leone; Gemignani, Angelo; Grigolini, P; West, Bj; Paradisi, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/195299
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 99
social impact