In this paper, we compare traditional classifiers, such as Linear and Quadratic Discriminant Classifiers and neural networks, with a one-class classifier, namely, convex hull. With reference to rolling element bearing diagnosis, we show that convex hull outperforms traditional classifiers in the classification of faults and different levels of fault severity not known during the training phase.

Rolling element bearing diagnosis using convex hull

COCOCCIONI, MARCO;LAZZERINI, BEATRICE;
2010-01-01

Abstract

In this paper, we compare traditional classifiers, such as Linear and Quadratic Discriminant Classifiers and neural networks, with a one-class classifier, namely, convex hull. With reference to rolling element bearing diagnosis, we show that convex hull outperforms traditional classifiers in the classification of faults and different levels of fault severity not known during the training phase.
2010
9781424469161
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/195481
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact